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Abstract

This paper is devoted to the design of Vortex-In-Cell (VIC) methods for the direct numerical simulations of wall-

bounded flows. A first method using body-fitted grid is presented in the particular case of a cylinder wake. This method,

which has been used in [Phys. Fluids 14(6) (2002) 2021] to investigate the effect on the wake topology of cylinder

rotations, is an extension of the VIC method presented in [J. Comput. Phys. 175 (2002) 702] for periodic geometries.

Features of the method that are specific to wall-bounded geometries – interpolation operators, field calculations and

vorticity flux formulas to enforce no-slip boundary conditions – are described in details. The accuracy of the method in

the calculation of the body forces is investigated by comparisons with experiments and benchmark calculations. A

second class of methods is in the spirit of the immersed boundary methods. The paper in particular shows that the no-

slip conditions are very naturally handled by the vorticity flux formulas, independently of the relative locations of the

particles and the body. Numerical experiments on the test-case of a ring impinging on a cylinder suggest that the

method is second-order accurate.

� 2003 Elsevier B.V. All rights reserved.
1. Introduction

The direct numerical simulation of three-dimensional (3D) bluff-body flows remains a challenging

problem in CFD. Even for rather simple geometries, like a cylinder, the need for accuracy and robustness is

very demanding for classical grid-based techniques. While accuracy often dictates the use of non-dissipative

finite-difference or spectral element schemes, stability impose constraints, on the compatibility of the grid

and flow topologies and on the time-step values, that can substantially slow down the methods.

By contrast, particle methods, when they use the appropriate tools, allow to some extent to by-pass the
usual accuracy–stability dilemma. The advection part of the equations indeed relies on the advection of
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particle, and thus is linearly unconditionally stable. Nonlinear stability requires that particles do not col-

lide, something which is guaranteed as long as the time-step does not exceed the time-scale on which the

flow is strained. This condition reads Dt6Cjruj�1
and thus does not involve the mesh size. In practice, for

well-resolved calculations where one wishes to use grid-sizes small enough to accurately capture high strain

regions, this condition is often much less demanding than classical CFL type conditions. As for the dif-

fusion part of the equation, deterministic particle methods are based on explicit solvers that are stable

under finite-difference like conditions of the type mDt6Ch�2, where m is the viscosity and h is the mesh size.

For moderate to high Reynolds numbers and affordable resolutions, this condition is generally not a severe

limitation in 3D calculations.

Systematic comparisons on a variety of 2D flows with non-dissipative finite-difference schemes have

shown that, in many cases, time-step limitations are indeed far less restrictive for particle methods than for
Eulerian methods, leading to substantial savings.

Concerning 3D computations, recent comparisons [4] with spectral methods for periodic laminar and

turbulent flows have given some insight into the accuracy and the subgrid behavior of particle methods. For

3D wall-bounded flows, vortex methods have been successfully used to compute vortex–wall collision [21]

and, more recently, the flow past a sphere at various Reynolds numbers [24]. In the first case, the method

was a Vortex-In-Cell (VIC) method, combining Lagrangian transport of particles with Eulerian field cal-

culation, while in the second case the authors used a totally grid-free vortex method, based on fast N body

solvers for fields evaluation.
Our goal in this paper is twofold. First, we show that Vortex-In-Cell methods are, in terms of accuracy/

cost balance, a viable alternative to Eulerian methods for DNS computations of cylinder wakes. Secondly,

we propose and validate an immersed boundary Vortex-In-Cell method to handle more complex geome-

tries.

Concerning the first point, one reason for focusing on cylinder wakes is that this is a well-documented

flow (see [1,18,19] for example), in particular since the experimental work of Williamson [29]. For this flow

however many open questions remain, due to the limitations of current CFD solvers. Some of these

questions regarding the bi-dimensionalization of 3D wakes under cylinder rotations, are addressed else-
where [8,26,27] and the present paper focuses on the numerical techniques underlying these numerical

simulations.

For cylinder wakes, and more generally bluff-body flows, beside the time-step constraints already

mentioned, Eulerian methods face additional difficulties in the treatment of outflow boundary conditions.

Nonlinear stability requires special care there, sometimes at the expense of mesh refinement, although

accuracy should not be a concern in this part of the flow. If grid-free particle methods are evidently free of

these difficulties, this is at the expense of using time-consuming N body solvers. As for vortex in cell

methods, since fields are computed on a grid, they have to introduce artificial boundary conditions on the
outer parts of the computational box for the calculation of the fields. One goal of the present study is in

particular to check whether accuracy, in the drag computation in particular, or stability impose drastic

conditions on the size of the computational box for VIC methods. Another point of concern about vortex

methods for wall-bounded flows is the consistent treatment of no-slip boundary conditions. Vorticity flux

formulas have been demonstrated (see in particular [16]) to be the appropriate formulation for vortex

methods to handle in two dimensions these boundary conditions. For 3D flows, an extension of this for-

mulation is given in [5] for flat boundaries. In the present paper, we show that in the case of more general

geometries the curvature of the boundary modifies the Neumann into a Robin type boundary condition for
the azimuthal component of the vorticity.

Concerning the second point addressed in this paper, the method we propose is in the spirit of immersed

boundary schemes originally proposed by Peskin [22] and recently revisited in the context of finite-differ-

ence techniques [9]. The general idea is to avoid technical difficulties in generating a body-fitted grid around

a possibly moving complex 3D obstacle, by using for instance a finite-difference solver on a fixed Cartesian
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grid overlapping with the boundary of the obstacle. Boundary conditions are enforced through a forcing

term in the right-hand side of the Navier–Stokes equations.

The interpolation on the grid of this forcing term, which by nature is singular and has support on the
boundary, is in finite-difference methods a critical point that conditions the overall accuracy. For vortex

methods, the situation is very different. No-slip boundary conditions are enforced by sources of vorticity

which are located on the boundary. The accuracy of this procedure depends on the grid resolution un-

derlying the distributions of source boundary points and flow particles, but not on the relative locations of

these two sets of points. The vorticity flux of boundary sources onto the flow particles somehow plays the

role of interpolation formulas needed in finite-difference methods. The method we propose is strongly based

on this remark and thus only introduces minor changes – including for 3D geometries – over a method

which would use a body-fitted grid. In that respect, our method differs significantly from the vortex method
designed in [23,24] (see also [28]), where particles close to the boundaries are monitored and given special

treatments.

The outline of the paper is as follows. In Section 2, we describe our method with body-fitted particles and

grid for cylinder wake calculations. We detail the Poisson solver used to compute velocity and strain on the

grid, and the vorticity boundary conditions needed to satisfy no-slip boundary conditions. We also give

some indications on the cost of the method compared to a purely grid-free particle method. Our method is

then validated by systematic inspection of drag curves for moderate Reynolds numbers. In Section 3 we

turn to the immersed boundary vortex method. We describe the algorithms used to satisfy no-through flow
and no-slip boundary conditions. The numerical validation is performed on the test-case of a ring-cylinder

collision. Finally Section 4 is devoted to concluding remarks.
2. A VIC method for the computation of 3D cylinder wakes

The general idea behind VIC methods, and more generally Particle-In-Cell methods, is to use particles to

transport conservative quantities and grid-based formulas to compute fields. For the incompressible

Navier–Stokes equations written in the vorticity–velocity form

ox

ot
þ ðu � rÞx� ðx � rÞu� mDx ¼ 0 ð1Þ

particles thus carry vorticity, while velocity and strain are computed on an Eulerian grid using Poisson

solvers. The reason for using this strategy to compute the fields, instead of direct, Biot–Savart law inspired,

integral formulas, is that even the fastest summation formulas are in many practical situations at least one-

order of magnitude slower than FFT-based current Poisson solvers. This will appear clearly on the timings

shown later in in this section.

The overall algorithm classically consists of alternating advection and diffusion equations. Convection is
done by pushing particles with their local velocities and updating their strength to account for the local

vorticity stretching (computed with centered fourth-order finite difference schemes).

Diffusion is done by a particle strength exchange (PSE) algorithm with appropriate Neumann boundary

condition to cancel the slip resulting for the advection step (see for instance [5,16]).

To preserve the accuracy of Particle methods for long time simulations, it has long been observed that

frequent regridding of particles on regular locations is necessary (see [14] for a convergence study of

remeshing). In our algorithm, remeshing is done at every time-step just before diffusion. This allows to use

the PSE scheme with formulas normalized on the basis of discrete moments, and thus avoids quadrature
errors in the diffusion approximation (see [6,25] for instance). When there is a solid boundary, in the body-

fitted method described in this section the grid fits with the solid boundary while particle are initialized and

remeshed on a staggered grid.
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Each time step of the algorithm can be summarized in this way.

Convection step:

• interpolation of vorticity from particles to grid,

• computation of velocity and strain on the grid,

• interpolation of velocity and strain on particles,

• update of particle locations and strengths.

Particle remeshing: Interpolation of particle strengths on regular locations.

Diffusion step: PSE scheme and vorticity flux formulas.

Note that, as already mentioned, the time step for diffusion and for convection/remeshing are constrained

by different stability conditions and need not be the same. In practice several sub-steps of convection, using

fourth-order Runge–Kutta time-stepping, may be done inside one diffusion step.

The overall structure of the algorithm has been described in a number of references (see in particular
[4,6]) and we focus here on the particular aspects of the algorithm related to the cylindrical geometry: we

first discuss the interpolation formulas needed to exchange information between particles and grid and to

remesh particles; then we describe the Poisson solver used to compute velocity values on the grid; finally we

derive vorticity flux formulas which translate the no-slip boundary conditions. The end of the section is

devoted to the numerical validation of the algorithm on 2D and 3D wake simulations.
2.1. Interpolation formulas for particle–grid mapping and particle remeshing

Let us first give the notations corresponding to the geometry of a bluff-body flow. X denotes the

computational domain, extending from the boundary of the obstacle, denoted by Cb, to the outer

boundary, denoted by C1. In the case of a flow past a cylinder, we will denote by subscripts r, h and z,
respectively, radial, azimuthal and spanwise field components. We will assume L-periodic boundary con-

ditions in the cylinder axis direction and the computational domain extends from r ¼ Rb to r ¼ R1.

Interpolation formulas are based on convolutions with a smooth kernel. The kernel used in the present

work is based on the following 1D function which is third-order – in the sense that it preserves the three first

moments of the distribution, twice continuously differentiable and symmetric (see [5]):

fðxÞ ¼
ð3x3 � 5x2 þ 2Þ=2 if 06 x6 1;

ð2� xÞ2ð1� xÞ=2 if 16 x6 2;
0 if xP 2:

8<
: ð2Þ

Rescaling this function at a grid-size e yields the following expression:

feðxÞ ¼
1

e
f

x
e

� �
: ð3Þ

To account for cylindrical geometries, the interpolation is based on tensor products of this function in

cylindrical coordinates. Assuming the same grid size in radial, angular and azimuthal directions, the re-

distribution of a given function f , extended by periodicity in the angular and azimuthal directions, into a
function ~ff is given by

~ff ðr; h; zÞ ¼
Z þ1

�1

Z þ1

�1

Z R1

R0

f ðs; n; uÞKrðr � sÞfeðh� nÞfeðz� uÞsdsdndu; ð4Þ
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where the subscript r in Kr means that the shape of the kernel depends on the location. The kernel Kr ¼ fe is
chosen unless particles and grid points are close to the boundary. For the second layer of grid points

(corresponding to r ¼ Rb þ e) the kernel f is used with ghost particles inside the body, carrying symmetric
weights. This amounts to replacing f by

KRbþeðrÞ ¼
fðrÞ if r6 0;
fðrÞ þ fð2� rÞ if 06 r6 1;
0 otherwise:

8<
: ð5Þ

This kernel is second-order accurate.

For the first layer of points (on the cylinder) we use the following one-sided interpolation formula:

KRb
ðrÞ ¼ r2 þ 4r þ 13=4 if � ð4þ

ffiffiffi
3

p
Þ=26 r6 0;

0 otherwise:

�
ð6Þ

This kernel has been chosen because it has the property to preserve circulation and linear impulse when

particles and grid points lie on staggered grids. We recall that this is the procedure selected to initialize and

remesh particles.

Finally, the interpolation of a quantity fp carried by particles located at ðrp; hp; zpÞ and whose volume is
vp is given by

~ff ðrp; hp; zpÞ ¼
X
q

fqKrpðrp � rqÞfeðhp � hqÞfeðzp � zqÞvq: ð7Þ

Note that this summation involves image particles in the corresponding directions to take in account an-

gular and spanwise periodicity. This formula easily extends to the case when different grid sizes are used in

the three directions.

Formula (7) is used at three stages of the algorithm: when particle vorticity is interpolated on a fixed

cylindrical grid where velocity are evaluated (see next section), when field values are interpolated back to

particles, and finally to remesh an eventually distorted particle distribution into a fresh, regular distribu-

tion. As we already mentioned, to maintain accuracy of the particle discretization, in all our calculations we
Fig. 1. Comparison of CPU time for the evaluation of particle velocities in a grid-free method based of on fast summation algorithm

[17] and in the present VIC method based on a Cartesian or polar Poisson solver: (�) direct summation [17], (�) fast multipole first-

order calculation [17], (�) VIC method on a cylindrical grid filled with 65% particles, (þ) VIC method on a cylindrical grid filled with

25% particles, and (j) VIC method on a Cartesian grid filled with 100% particles.



Fig. 2. Interpolation between particles (located at xp) and grid points (located at xq), in cylindrical coordinates (left picture) and

mapped coordinates (right picture).

Fig. 3. Kernels used for remeshing and interpolation: f (–––), KRbþe (–– –– ––, left picture), and KRb
(- - -, right picture).
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remesh the particle at every time-step before the diffusion step. The remeshing procedure and formulas (5)

and (6) are illustrated on Figs. 2 and 3.

2.2. Velocity evaluations

Once vorticity has been assigned to the grid, the velocity is computed according to the Helmholtz

decomposition

u ¼ �uuþr� wþr/; ð8Þ
where �uu is the potential flow around the cylinder with prescribed value at infinity. One then has r� u ¼ x

and r � u ¼ 0 provided the stream function w and the potential / satisfy the following Poisson equations:

�Dw ¼ x in X; ð9Þ

r � w ¼ 0 in X; ð10Þ

D/ ¼ 0 in X: ð11Þ



142 G.-H. Cottet, P. Poncet / Journal of Computational Physics 193 (2003) 136–158
The boundary conditions to complement this system are adjusted to ensure no-through flow on the cylinder

and the artificial boundary condition u ¼ u on the outer limit of the computational domain.

More precisely our solution procedure is as follows. We first compute wx and wy solutions to �Dwx ¼ xx,
�Dwy ¼ xy with periodic boundary conditions in the z- and h-direction, and homogeneous Dirichlet

boundary conditions in the radial direction. Then we compute the remaining component wz, satisfying

�Dwz ¼ xz with periodic boundary conditions in the z- and h-direction, and the following Dirichlet

boundary condition in the radial direction:

wzðr; h; zÞ ¼ �
Z z

0

owr

or
ðr; h; sÞds for r ¼ Rb and r ¼ R1: ð12Þ

With these boundary conditions, one has

r � w ¼ 0 on Cb and C1

and periodic boundary conditions in z. Since

Dðr � wÞ ¼ r � x in X

and x is divergence-free, this implies that

r � w ¼ 0 in X:

It remains to compute the scalar potential /. In order to impose the correct boundary condition on the

cylinder, we require the following Neumann type boundary condition:

o/
on

¼ �ðr � wÞ � n on Cb and C1; ð13Þ

to complement the Poisson equation (11) for /. Fig. 4 summarizes the procedure to impose the no-through
flow boundary condition.
Fig. 4. Body and far-field boundary conditions for velocity field.
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Note that, ifZ L

0

owr

or
ðr; h; sÞds 6¼ 0

the periodic boundary condition combined with (12) may create a singularity for wz, and thus for /, near
the corners of X which can affect the accuracy in the finite-difference calculations of velocities. In [25], an

algorithm to remove this singularity is derived, based on the resolution of additional 2D Poisson equations.

However, in practical calculations, spurious effects of this singularity have never been observed and the

original algorithm based on formula (12) without correction has been found satisfactory. It is also im-

portant to notice that the far-field boundary condition consists of imposing u ¼ u at the outer boundary.

This may seem a rather crude approximation, in particular compared to the exact far-field condition im-
plicitly used in grid-free vortex methods. Nevertheless, the numerical results shown below (see Table 1)

demonstrate that this boundary condition allows to obtain convergent results on the body with compu-

tational domains significantly smaller, in the streamwise direction, than those currently used in finite-dif-

ference methods.

One nice feature of using a scalar potential to compute velocities, is that boundary conditions do not

couple the computations of the three components of the stream functions. This allows to use simple scalar

Poisson solvers. In our simulations we used classical Fishpack package solvers.

To give an idea of the computational cost of the overall numerical procedure to compute the velocities,
including interpolations and Poisson solvers, we show in Fig. 1 a comparison of CPU times for our method

compared to the fast summation algorithm based on a tree-code given in [17]. For a sake of fairness, a

scaling factor of 4, based on the CPU time needed for direct summation methods on the different platforms,

has been applied to account for the difference in processor speeds between the SGI 75 MHz processor used

by these authors and the Alpha 500 MHz processor we were using. Although the development and im-

plementation of 3D fast solvers is a rapidly growing field, we believe that these comparisons give a good

indication of the speed up offered by VIC methods, except when vorticity is strongly localized (which was

the case in the vortex sheet calculations of [17]).
In practical implementations of vortex methods, an additional speed up factor can be obtained from the

following remark: the convection of particles is most often done with a multi-step time-stepping. In a Biot–

Savart type algorithm, velocities are in general recomputed at every sub-step since particles have moved. In

all our VIC calculations, we have observed that it is possible to compute only once per time step the grid

velocities without noticeably deteriorating the accuracy. Particle motions during the substeps have only to

be taken into account when grid velocities are interpolated on particle locations. When a fourth-order

Runge–Kutta time-stepping is used, this introduces another significant speed up (note that this remark also

applies to Biot–Savart codes: in that case a fast summation, instead of a Poisson solver, would be used to
compute velocity and strain on regular grid points).

To finish with these comparisons, let us again stress the fact that the speed up of VIC methods on Biot–

Savart based methods is very much problem dependent. In case particles occupy only a very small portion
Table 1

2D drag coefficients and Strouhal numbers for Re ¼ 400 and various domain sizes

ðR1 � RbÞ=Rb Npart (� 10�3) CD St cCLCL

2p 4.60 1.5270 0.2253 1.135

4p 8.29 1.4205 0.2247 1.130

8p 16.66 1.4080 0.2237 1.125

16p 33.12 1.4075 0.2232 1.123

Npart is the mean number of particles once oscillatory regime is established.
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(say less that 10%) of a computational box that would be required in a VIC method, Biot–Savart inspired

methods may become comparable or even more effective than VIC methods. Particular cases of localized

vorticity are 1D or 2D vortex sheets (like in the calculations of [17]) or when one desires to follow a wake
very far downstream (like in reference [24]). In our case, we were interested by body forces for a cylinder

wake in a computational grid which was filled by approximately 25% of particles, and Biot–Savart methods

were clearly outperformed by VIC methods (by a factor of about 20 according to Fig. 1) .
2.3. No-slip boundary condition and vorticity flux formulas

In vortex methods, the no-slip boundary condition is classically enforced by the creation of a vortex

layer in the vicinity of the boundary [2]. In a fractional step algorithm, this vortex layer is designed to cancel
the slip resulting from previous advection and diffusion steps. A clear-cut mathematical definition of this

method is based on a vorticity flux formula – or Neumann type boundary conditions – in the vorticity

diffusion equation. In two dimensions, if Dt is the diffusion time-step and u � s the residual slip resulting

from the advection of particles and the PSE scheme, this formula reads

ox
ot

� mDx ¼ 0 in X;
m
ox
on

¼ � u � s
Dt

on Cb:

This equation has to be solved for a time-step Dt, with zero initial condition. The resulting field is then

added to the vorticity obtained at the end of the previous advection–diffusion step. Fig. 5 is a sketch of this

vorticity creation algorithm. The integral equation related to the above system, designed and implemented
in the context of vortex methods in [16], has been since then the object of several works (see for instance

[23]).

In 3D flows, boundary conditions are required for all three components of the vorticity. For plane

boundaries, the 2D boundary conditions easily extend to give Neumann boundary conditions for the two

tangential vorticity components. The flux of each tangential component must cancel the slip in the or-

thogonal direction [5]. For curved boundaries however, a closer look at the vorticity equation for the

azimuthal component reveals that the vorticity flux for this component should correspond to a Robin type

boundary condition. Indeed, from the Navier–Stokes equation, one gets in a viscous splitting algorithm the
following diffusion equation for xh:

oxh

ot
� m Dxh

�
þ 2

r2
oxr

oh
� xh

r2

�
¼ 0 in X: ð14Þ
ΓbΓb

n

residual slip

Γb

no residual slip

x
x

n

=
x

+

Fig. 5. Vorticity boundary conditions on the body Cb.
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Upon observing that

o

or
1

r
o

or
rxhð Þ

� �
¼ 1

r
o

or
r
oxh

or

� �
� xh

r2

this above equation can be rewritten as

oxh

ot
� m

o

or
1

r
o

or
rxhð Þ

� ��
þ 1

r2
o2xh

oh2
þ o2xh

oz2
þ 2

r2
oxr

oh

�
¼ 0:

It shows that the flux of azimuthal vorticity entering the flow through diffusion is given by ðm=rÞ
ðoðrxhÞ=orÞ. As a result, the natural boundary condition on xh to cancel the slip in the spanwise direction

reads

m
r
o

or
rxhð Þ ¼ uz

Dt
on Cb: ð15Þ

As for the spanwise vorticity, since there is no curvature in the boundary on that direction, its boundary

condition is a regular Neumann boundary condition, as in the case of a plane boundary. Finally the

boundary condition for the normal vorticity component is clearly an homogeneous Dirichlet condition,

since this component only involves tangential derivatives of the velocity at the wall. To summarize, the no-

slip boundary condition is satisfied through the solution over the time-step Dt of the following diffusion

equation:

ox

ot
� mDx ¼ 0 in X; ð16Þ
xr ¼ 0 on Cb; ð17Þ
m
oxz

on
¼ � uh

Dt
on Cb; ð18Þ
m
xh

r

�
þ oxh

on

�
¼ uz

Dt
on Cb; ð19Þ

where uh; uz, respectively, denote the azimuthal and spanwise residual slip at the end of the previous
convection step.

As a check of the consistency of these boundary conditions, it is worth noticing that they do not create

any vorticity divergence. Along the same lines as in [5] and [27] we write, upon expanding the divergence

and Laplace operators in the cylindrical basis ð~eer;~eeh;~eezÞ:

o

or
ðr � xÞ ¼ o2xr

or2
þ 1

r
oxr

or
� xr

r2
� 1

r2
oxh

oh
þ 1

r
o2xh

oroh
þ o2xz

oroz

¼ ðDxÞ �~eer þ
1

r
o

oh
1

r
xh

� �
þ 1

r
o

oh
oxh

or
þ o

oz
oxz

or
:

In view of (14), (16) and (17), we obtain on the boundary Cb,

o

or
ðr � xÞ ¼ 1

m
oxr

ot
þ 1

r
o

oh
xh

r

�
þ oxh

or

�
þ o

oz
oxz

or
¼ 1

m
oxr

ot
þ 1

mDt
1

r
ouz
oh

� 1

mDt
ouh
oz

¼ 1

m
oxr

ot
þ exxr

mDt
;
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where we have denoted by exx the vorticity associated with the velocity field at the beginning of this diffusion

step. We next observe that, by (17), the radial vorticity vanishes at the wall during the diffusion step. Since

the normal velocity is zero at the wall, this remains true during the convection step, and the above right-
hand side thus vanishes at the wall. The vorticity divergence finally satisfies

oðr � xÞ
ot

� mDðr � xÞ ¼ 0 in X;

o

or
ðr � xÞ ¼ 0 on Cb;

8><
>:

which proves our claim that, with the boundary conditions (17)–(19), no vorticity divergence is created

during the diffusion step.

Once the correct boundary conditions have been identified, it remains to indicate how they translate in a

vortex method. Following the idea developed in [15] we use a boundary integral formulation. The solution

to (16)–(19) is written as

xðx; tÞ ¼
Z t

0

Z
Cb

Gðx� n; 4mðt � sÞÞlðn; sÞdnds; ð20Þ

where G, the kernel of the heat equation, is defined in 3D by

Gðf; rÞ ¼ e�f2=r2

p3=2r3
:

Applying Friedmann�s theory [10] to Eqs. (16)–(19), one finds that components of l are solutions of the

integral equations

� 1

2
lrðx; tÞ þ m

Z t

0

Z
Cb

1

r
Gðx� n; 4mðt � sÞÞ lðn; sÞ � nxð Þdnds ¼ 0; ð21Þ
� 1

2
lhðx; tÞ þ m

Z t

0

Z
Cb

oG
onx

�
þ G

r

�
ðx� n; 4mðt � sÞÞ lðn; sÞ � sxð Þdnds ¼ � uhðx; tÞ

Dt
; ð22Þ

and

� 1

2
lzðx; tÞ þ m

Z t

0

Z
Cb

oG
onx

ðx� n; 4mðt � sÞÞ lzðn; sÞð Þdnds ¼ uzðx; tÞ
Dt

: ð23Þ

If the boundary was a flat plane, these three integral equations would be uncoupled. In cylindrical

coordinates, there is a coupling between Eqs. (21) and (22). Note that in the case of a general 3D body Cb,
there would be a coupling between all these three equations. Nevertheless, Eq. (21) can be rewritten

� 1

2
lrðx; tÞ þ mj3

Z t

0

Z
Cb

Gðx� n; 4mðt � sÞÞ lrðn; sÞx � n
�

þ lhðn; sÞ detðx; n;~eezÞ
�
dnds ¼ 0;

where j ¼ 1=R is the curvature of the cylindrical physical boundary. Since, for symmetry reasons,Z t

0

Z
Cb

Gðx� n; 4mðt � sÞÞ detðx; n;~eezÞdnds ¼ 0;
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to the leading order lr is solution of

� 1

2
lrðx; tÞ þ mj3

Z t

0

Z
Cb

Gðx� n; 4mðt � sÞÞ lrðn; sÞx � nð Þdnds ¼ 0;

and thus lr ’ 0. Consequently, only the two independent Eqs. (22) and (23) have to be solved. By means of

a Taylor development of the heat layer [15], one finally gets

lh

lz

� �
’ �2

1þ j
ffiffiffiffiffiffiffiffiffiffiffiffi
mDt=p

p� �
Dt

J2
uh
uz

� �
; where J2 ¼

0 1

�1 0

� �
; ð24Þ

where we recall that uh; uz are the spurious velocities obtained at the end of a convection step. The flux of

vorticity defining the boundary layer is thus totally explicited. Numerical validations of these formulas can

be found in [25].

2.4. Numerical results

In this section we present some numerical validation of the method just presented for wake calculations.

The wake of a cylinder remains a challenging case, in particular due to the computational effort devoted

in grid-based methods to correctly approximate the outflow boundary conditions. Our goal here was in

particular to investigate the effect of a rather short truncation of the computational domain on the accuracy

in the computed drag coefficient. Figs. 10 and 6 summarize the dynamics of a typical wake, going from a 2D

K�aarm�aan street (cf. Fig. 7) to a fully 3D flow (cf. Fig. 6), for a Reynolds number Re ¼ 300. An indicator of

the amount three-dimensionality of the flow is the enstrophy corresponding to the radial and azimuthal

vorticity components, what we call transverse enstrophy, denoted as
Fig. 6. Isovalues of transverse and spanwise vorticity at Re ¼ 300, exhibiting a 3D saturated mode B instability.



Fig. 7. 2D vorticity field at Re ¼ 300.

Fig. 8. Convergence of drag coefficient and Strouhal number for 2D simulations at Re ¼ 400.
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Z? ¼
Z
X
x2

r ðxÞ þ x2
hðxÞdx:

Fig. 12 shows that this transverse enstrophy remains in a first stage basically at the round-off level, then

increases exponentially while streamwise vorticity develops along so-called ‘‘mode B’’ waves [29] (see Fig. 6),

whose wavelength is close to the diameter of the cylinder. An interesting tool to track these waves is the

spectral profile, defined as the norm of the spanwise Fourier transform of the velocity field for a given wave
number. The spectral profile associated to the main-growth wavelength, in the present case k=D ¼ 0:79, is
shown on Fig. 11. This result compares well with the spectral profile provided in [1], whose main-growth

wavelength is predicted k=D ¼ 0:82.
The dynamics evolution from 2D to 3D is accompanied by a decrease in the drag value, as shown in

Fig. 10. A thorough discussion of these results is given in [27].

Beyond this stage, streamwise structures of vorticity interact together and with the von K�aarm�aan alleys.

The flow enters a saturated regime, represented by the saturation of the transverse enstrophy, plotted on

Fig. 12.



Fig. 9. Relative error in drag coefficient CD (þ), lift coefficient CL (�) and Strouhal number St (�) for 2D simulations at Re ¼ 400.

Dotted lines correspond to first-order (left picture) and third-order (right picture) convergence.

Fig. 10. Direct numerical simulation of an unstable 3D wake: typical drag (–––) and lift (- - -) response to three-dimensionality for

Re ¼ 300. Dotted lines correspond to 0, 0.96, 1.262 and 1.38.
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In these calculations the computational domain was

R6 r6 ð1þ 4pÞR and � pR6 z6 pR:

We used 256� 128� 128 grid points. The ratio grid spacing versus particle spacing was always unity. When

the wake was fully developed, particles occupied roughly 25% of the computational box. This size, which

allows to follow four rolls (see Fig. 10), is in general thought as sufficient for accurate computation of body
forces, especially the drag coefficient, provided the outflow boundary conditions do not create spurious

vorticity. This is confirmed by our calculations.

Indeed, Table 1 and Figs. 8 and 9 shows the evolution of a few 2D diagnostics with respect to the domain

size. These diagnostics are the mean drag coefficient CD, the mean top lift coefficient cCLCL and Strouhal

number St. The domain size is successively chosen at ðR1 � RbÞ=Rb ¼ 2p, 4p, 8p and 16p.



Fig. 11. Direct Numerical Simulation of an unstable 3D wake for Re ¼ 300: typical spectral profile of main-growth wavelength

(mode B).

Fig. 12. Evolution of the 3D part of enstrophy, at Re ¼ 300, using natural scale (left picture) and logarithmic scale (right picture).
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One can notice on Fig. 9 that convergence of lift coefficient and Strouhal number is first-order, while

drag coefficient is third-order. Computations can be considered as converged for ðR1 � RbÞ=Rb ¼ 8p. For a
distance of 4p, the error in the diagnostics is of the order of 1%. Given that we were mostly interested by the

relationship between the dimension of the flow and the drag values, and that the difference between the 3D

and 2D drag values at this Reynolds number was about ten times bigger, this level of accuracy was con-

sidered as satisfactory. A truncation radius corresponding to ðR1 � RbÞ=Rb ¼ 4p allows 3D calculations

with good enough spanwise resolution to capture the desired wavelengths. Note that most finite-differences

calculations need to extend the domain much further in the radial direction to avoid spurious wave re-

flection, sometimes at the expense of an insufficient spanwise resolution (for instance [20]). One explanation

of the good behavior of the method even for relatively small domain in the radial direction is that the
truncation of the domain only affects the field reconstruction, while the Lagrangian treatment of the

vorticity advection equation does not rely on any artificial boundary condition.

Table 2 shows a comparison of drag values obtained in our computations (see also Fig. 10) and in other

reference simulations [11,13,18]. More numerical results on this flow, and in particular new results con-

cerning the effect of cylinder rotations on the topology of the wake, can be found in [7,26,27].



Table 2

Mean drag coefficients and Strouhal numbers for various Reynolds numbers, compared to reference diagnostics from [11], except �
from [18] and y from [13]

Re Dim. CD St Ref. CD Ref. St

300 2D 1.382 0.2110 1.377 0.211

300 3D 1.262 0.2027 1.28� 0.203�

400 2D 1.408 0.2237 1.414 0.220

400 3D 1.198 0.210 1.2y –
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3. Immersed boundary VIC methods

The concept of immersed boundaries is an attempt to free numerical computations of flows around

complex geometries from technically difficult and time-consuming grid generation algorithms. One may
distinguish two broad classes of such methods. In the first class, reminiscent to volume of fluid (VOF)

methods, computational cells close to the boundary are given a special treatment, depending on the way

they intersect the boundary. For the inertial terms for instance, this approach typically leads in 2D finite-

volume methods to modified flux formulas that seem rather involved to implement in 3D. In this class of

methods, let us also mention the recent paper of Ploumhans and Winckelmans [23] and Ploumhans et al.

[24], where vortex methods are designed to handle complex 2D and 3D geometries. In these papers,

particles are given different treatments depending on there distance to or amount of overlapping with the

body.
In the second class of methods, the flow equations are discretized in a unique way throughout the

computational domain, which includes the immersed body, and boundary conditions appear in the form of

localized forcing terms in the right-hand side of the flow equations. Our efforts belong to this class. We

actually believe that since a non body-fitted method cannot take advantage, at least not in a straightforward

way, of refinement potential that grid generation methods in general offer near boundaries, immersed

boundary techniques must remain very simple and economical to compete with ever improving body-fitted

techniques.

Immersed boundary methods can be traced back to Peskin�s original idea of treating elastic fibers in
biological flows by forces acting on the flow [22]. This idea, which was actually proposed together with a

vortex method, although physically appealing, did not rely on a clear-cut treatment of boundary con-

ditions. More recent efforts in the context of finite-difference methods aimed at giving a more conven-

tional numerical definition of boundary conditions imposed on an immersed boundary. The general idea

is to enforce boundary conditions through the addition of a singular source term on the boundary. This

source term can be written most simply and efficiently directly at the discrete level as a forcing that at

every time-step drives the flow back to rest on the boundary. A key point is then to interpolate this

singular forcing on the grid points next to the boundary. Of particular interest is the reference [9] where
the accuracy of the particular form of the interpolation function which distributes the forcing term on the

grid is discussed. It seems that the optimal interpolation scheme has to be chosen carefully in function of

the particular finite-difference method used to discretize the Navier–Stokes equations. For centered

second-order finite-difference methods a linear interpolation allows to retain second-order accuracy up to

the boundary.

In view of their robustness and reasonable cost when used with Cartesian grids, Vortex In Cell methods

should clearly benefit from immersed boundaries approaches. The accuracy of vortex methods is largely

dependent on accurate regridding techniques that in general require the use of global mappings to Cartesian
geometries – as it is the case for cylinder wakes. Although it is possible to combine several local mappings in

domain decomposition-like methods that can facilitate their implementation for complex geometries [6],
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incorporating the concept of immersed boundaries in VIC methods would certainly add a great deal of

flexibility in their application. The field computations through Poisson solvers is also clearly faster in

Cartesian geometries than for more general cases, in particular due to the coupling generally appearing in
the computations of all stream function components.

As it turns out, the treatment of immersed boundaries is very natural in the context of vortex methods

[3]. Even in a body-fitted vortex method, vorticity flux formulas used to satisfy the no-slip condition can

indeed be seen as a forcing term in the flow equation. As we will demonstrate below, the extension of this

technique to immersed boundary is at the same time immediate and accurate. In the rest of this section, we

successively describe how we handle no-through flow an no-slip boundary conditions, then we show some

numerical validations of the method.
3.1. No-through flow boundary condition

When the Biot–Savart law is used to compute velocities in grid-free vortex methods, the no-through

flow boundary condition is enforced by using single or double layer potentials. These potentials are

evaluated on source points distributed along the boundary and through integral equations which translate

the condition u � n ¼ 0 on these points, along the lines of the classical panel method [12]. This procedure

does not require particles in the flow to be initialized and remeshed on body-fitted grid. It thus gives a

simple and elegant way to deal with immersed boundaries. Details of this method and numerical
illustrations on impulsively started 2D cylinder are given elsewhere [3,7]. Here, for cost considerations

already mentioned, we are interested in velocity evaluations based on grid Poisson solver. This leads to a

slightly more involved method to account for the no-through flow boundary condition.

Let us assume that, at a given time-step, x is an extended vorticity field (that may simply be the extension

by 0 of the flow vorticity) in a computational box X containing the body (typically we will use a square

box). Going back to the Helmholtz decomposition of the velocity, we have to solve, for the extended stream

functions w and potential /, successively

�Dw ¼ x in X; ð25Þ
r � w ¼ 0 in X; ð26Þ

then

D/ ¼ 0 in X and in X� X; ð27Þ
o/
on

¼ �ðr � wÞ � n on Cb: ð28Þ

The above boundary condition on / has to be understood in the sense of outer normal derivative – as-

suming the flow domain is outside the obstacle.

Let us first point out that, if the domain X is simple enough, the condition (25) is much simpler to

complement with appropriate boundary conditions that enforce the divergence-free condition (26) than for

a general domain. For a square box with sides parallel to the axis for instance, it suffices to use

homogeneous Neumann boundary condition on the side perpendicular to the z-axis for the z-component

of w and homogeneous Dirichlet condition for the two other components, and similar conditions on the

other sides of the box. This is definitely one advantage in using a Cartesian mesh rather than a body-
fitted mesh.
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The strategy to implement the boundary condition (28) when Cb does not coincide with grid points starts

with the following observation: if / was a continuous harmonic extension of the exact flow potential across

the boundary, in view of its gradient discontinuity we would get

D/ ¼ o/
on

� �
Cb

� dCb
;

where ½�� means the jump across Cb and dCb
is the 2D Dirac mass supported by Cb. The goal is to determine

½o/
on
�Cb

and to distribute it on grid points. We proceed as follows: we first tag grid points which are at a
distance less than the grid-size from the boundary. We denote by eCC the set made by these N grid-points. We

then are looking for a function g, with support on eCC (see Fig. 13), such that the solution to the system

D/ ¼ g in X; ð29Þ
o/
on

¼ 0 on C; ð30Þ

satisfies

o/
on

¼ �ðr � wÞ � n on eCC:
This constitutes a linear system for the unknown function g over eCC of size N . We use a GMRES type

iterative solver to solve this system. The vector–matrix product involved in the iterative method consists of

the solution of a Poisson equation followed by the evaluations of potential derivatives on the tagged grid-

points. In the numerical examples given below, we use a standard Fishpack Poisson solver on a Cartesian

uniform mesh, and second-order one-sided finite-differences for the gradient evaluation.

The method just outlined is very simple-minded and one expected drawback is that since the boundary

condition is only fulfilled ‘‘near’’ the boundary, at most first-order can be achieved, with the risk of flow
leaking outside X. However the incompressibility of the flow has a nice side effect here: the no-slip condition

implies that the normal derivative of the normal velocity component vanishes on Cb. Therefore one has
∆ φ = g

Γb

g

−

Fig. 13. Enforcement of no through flow condition for immersed boundary technique.
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u � nðxÞ ¼ O dðx;CbÞ2
� �

:

As a result, enforcing no-through flow at a distance less than a grid-size from the boundary yields second-

order accuracy. In all our numerical experiment, no-through flow at the boundary was indeed satisfied well

beyond the truncation errors introduced by the other approximations made in the vortex method. At every
time-step, the GMRES method was initialized by the result of the previous time-step and two to three

iterations were in general sufficient to reach the chosen residual error – fixed to 10�5 in our calculations.
3.2. Remeshing, diffusion and no-slip boundary condition

The reason for treating remeshing diffusion and no-slip boundary condition in the same discussion is

that these three steps are tightly linked outside the advection step. In our VIC algorithms, we recall that

remeshing is performed just before diffusion and vorticity flux formulas. In a body-fitted mesh, as already
mentioned, one in general tries to use one-sided formulas. Diffusion for the tangential vorticity components

is performed with homogeneous Neumann boundary conditions before vorticity fluxes formulas are ap-

plied. Since immersed boundary methods work on extended vorticity, these variants are no longer neces-

sary, and plain remeshing or PSE formulas can be used in a straightforward way. This definitely

distinguishes our method from the method proposed in [23] which uses corrected interpolation formulas to

account for the overlapping of the boundary and the cells and is more in the spirit of VOF method. Note

that the vorticity flux formulas that are essential in any vortex method are designed to correct, on the basis

of the slip evaluated at the beginning of that step, any wrong vorticity flux that can have been injected in the
flow by diffusion and remeshing. Using centered formulas to remesh vorticity and plain PSE formulas to

diffuse vorticity near the boundary have only the effect of introducing spurious vorticity in the flow,

something that the vorticity flux formulas are in any case designed to correct. In other words, not only the

method described in Section 2 can be used without modification even if the boundary does not coincide

with the underlying grid, but the concept of immersed boundary frees us from the need of having to use

particular remeshing or diffusion formulas near the boundary.

Another point that must be made is that the vorticity flux is done from source points that are located on

the boundary Cb itself, and not on grid points, and is estimated on the basis of the slip also evaluated on Cb.
Therefore the no-slip boundary condition is enforced, up to the discretization errors, on the body boundary

itself, no matter where flow particles are initialized and remeshed. In their ease to handle naturally

immersed boundaries, vortex method definitely differ from grid-based methods.
3.3. Numerical examples

We focus here on the case of a ring impinging on a 3D cylinder (comparisons of drag values with ref-

erence results for impulsively started 2D cylinders are given elsewhere [3,7]). The initial condition consists
of a ring of unit circulation with outer radius 1.4, and a Gaussian core of radius 0.5, located at a distance

from the cylinder equal to 2.5 times the cylinder radius.

The computational box is a cube of size corresponding to three cylinder diameters. The Reynolds

number is 400. Fig. 14 shows isosurfaces of vorticity magnitude at two successive times of the collision

process. One can observe the production of secondary vorticity on the cylinder which rebounds and

eventually creates two secondary rings.

We show in Fig. 15 the normal velocity on the cylinder for a rather coarse grid-size, corresponding to a

grid resolution of 323 points, compared to the normal velocity that would be induced in free space by the
ring on the cylinder. The normal velocity is at a level such that particles only exceptionally leak outside the

flow domain.



Fig. 15. Cylinder–ring interaction: normal velocity along the cylinder symmetry plane before and after potential correction.

Fig. 14. Cylinder–ring interaction: isosurfaces of vorticity magnitude for times 10 and 40.
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We now turn to the treatment of the no-slip condition. In Fig. 16 we monitor the time evolution of the

residual slip velocity together with the location, in the direction of the symmetry axis of the ring, of

the center of velocity (for the purpose of this figure, these quantities are not scaled). One can observe that
the slip is slightly increasing as the ring approaches the cylinder. It reaches its maximum value at about the

time of collision, noticeable in the inflexion visible in the slope of the descent curve. Fig. 17 is a refinement

study, at that time, of the accuracy in the treatment of the no-slip condition. In this figure are plotted the

residual slip together with the numerical dissipation of the algorithm for several mesh-resolutions. The slip

is evaluated in maximum norm, normalized by the slip induced by the initial ring, in absence of vorticity

flux at the boundary. The effective diffusion of the algorithm computed by the formula

meffðtÞ ¼
1

2SðtÞ
d

dt
EðtÞ;



Fig. 17. Residual slip and numerical diffusion for several mesh refinements.

Fig. 16. Cylinder–ring interaction: time history of residual slip and location of center of vorticity along the ring axis.
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where EðtÞ and SðtÞ, respectively, denote the instantaneous energy and enstrophy. The discrepancy meff � m,
plotted in Fig. 13, essentially measures the cumulative dissipative effect of remeshing and vorticity creation.

This figure shows that second-order accuracy is reached, which validates the argument given above in favor

of a method where remeshing and diffusion are done by standard centered formulas up to the boundary.

Some indications of the cost of the method can further shed some light on the limits and possibilities of

the method. For a 963 grid and about 500,000 particles, the CPU time was 50 s per time-step on a DEC



G.-H. Cottet, P. Poncet / Journal of Computational Physics 193 (2003) 136–158 157
alpha workstation running at 500 MHz. This must be compared to the CPU taken by the cylindrical grid.

The cost is about the same; in that case the advantage of using a faster Cartesian grid Poisson solver and

simpler interpolation formulas in the immersed boundary code is compensated by the cost of the linear
system to satisfy the no-through flow. For a cylinder wake, given the natural stretching of the cylindrical

grid in the azimuthal direction, it seems unlikely that an immersed boundary vortex method can compete

with the body-fitted method, except if a stretched Cartesian grid was used. Such a possibility, which would

follow the lines of [6] was not yet implemented.
4. Conclusion

Two classes of VIC methods for the simulation of wall bounded flows have been described and validated.

The first class uses body-fitted grids and particle distributions. An Helmholtz decomposition of the velocity

fields allows to decouple the calculations of the stream functions which make possible the use of fast

Poisson solvers. Numerical validations show that for wake calculations the far field boundary conditions

required by these Poisson solvers does not introduce severe limitations over a totally grid-free particle

method, as far as body forces are concerned. The resulting method retains the robustness and accuracy of

grid-free particle methods while significantly reducing their numerical cost. In passing, we have also given a

consistent treatment of 3D vorticity conditions which is not limited to flat boundaries.
The second class of methods deals with bodies as immersed boundaries. No through-flow and no-slip

boundary conditions are enforced at two different stages of the algorithm: the no through-flow boundary

condition is satisfied in the field calculation via the addition of an appropriate singular component to the

potential part of the velocity. The no-slip condition is naturally handled by the vorticity flux formulas that

are derived in body-fitted geometries. The method has been validated on the problem of a ring impinging on

a cylinder. This problem has been selected as a prototype of 3D vortex–wall interaction which requires to

capture accurately the vorticity created at the boundary. A refinement study suggests that the method is

second order accurate. This method thus appears to retain the simplicity of particle methods in Cartesian
geometries – in particular in the field evaluations and the interpolation formulas – while being general

enough to apply to complex geometries.
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